IMP dehydrogenase inhibitor mycophenolate mofetil induces caspase-dependent apoptosis and cell cycle inhibition in multiple myeloma cells.

نویسندگان

  • Naoko Takebe
  • Xiangfei Cheng
  • Tamer E Fandy
  • Rakesh K Srivastava
  • Suhlan Wu
  • Sharmila Shankar
  • Kenneth Bauer
  • John Shaughnessy
  • Guido Tricot
چکیده

Multiple myeloma is an incurable disease for the majority of patients, therefore requiring new biological targeted therapies. In primary myeloma cells, IMP dehydrogenase (IMPDH) was shown to be consistently overexpressed. We therefore tested the IMPDH inhibitor mycophenolate mofetil (MMF) currently available as a clinical therapeutic agent for its antimyeloma activity in vitro. MMF depleted intracellular guanosine 5'-triphosphate (GTP) levels in myeloma cells. We showed apoptosis induction in myeloma cell lines and primary myeloma cells between 1 and 5 mumol/L MMF. MMF was also cytotoxic at this concentration in dexamethasone-resistant and Mcl-1-overexpressed myeloma cell lines shown by the tetrazolium salt XTT assay along with cell survival measured by a modified flow cytometric assay. Apoptosis was not inhibited by the presence of an antioxidant, suggesting that MMF-induced apoptosis is less likely to be associated with reactive oxygen species. However, apoptosis was abrogated by exogenously added guanosine, which activates an alternative pathway for GTP formation, implicating that this effect is directly mediated by IMPDH inhibition. MMF-induced G1-S phase cell cycle arrest and its apoptosis induction mechanism were associated with a caspase-dependent pathway as shown by alteration of mitochondrial membrane potential and cytochrome c release followed by activation of the caspases. MMF-induced apoptosis was also inhibited by a pan-caspase inhibitor Z-VAD-fmk. MMF-treated myeloma cells showed an up-regulation of Bak, which most likely together with Bax resulted in the release of cytochrome c. In summary, MMF attenuates G1-S phase cell cycle progression and activates the pathway of mitochondrial dysfunction, leading to cytochrome c release followed by activation of caspases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase I clinical trial of the inosine monophosphate dehydrogenase inhibitor mycophenolate mofetil (cellcept) in advanced multiple myeloma patients.

PURPOSE Inosine monophosphate dehydrogenase (IMPDH) inhibitors have been used to induce leukemia blast cell differentiation but have not been tested in multiple myeloma for activity. Currently, available IMPDH inhibitor, mycophenolate mofetil (MMF), which is known as an immunosuppressant, was shown to induce apoptosis in myeloma cell lines. On the basis of our preclinical studies, we designed a...

متن کامل

The novel, proteasome-independent NF-kappaB inhibitor V1810 induces apoptosis and cell cycle arrest in multiple myeloma and overcomes NF-kappaB-mediated drug resistance.

Evidence is increasing that aberrant NF-kappaB activation is crucial for multiple myeloma pathophysiology and a promising target for new antimyeloma therapies. In this study, we assessed the in vitro antimyeloma activity of the novel NF-kappaB inhibitor V1810. Pharmacokinetics and toxicity were studied in vivo. In mice, V1810 plasma concentrations of 10 micromol/L can be reached without relevan...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line

Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2006